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This study investigates the recently identified phenomenon whereby a forcing 
disturbance moving steadily with a transcritical velocity in shallow water can 
generate, periodically, a succession of solitary waves, advancing upstream of the 
disturbance in procession, while a train of weakly nonlinear and weakly dispersive 
waves develops downstream of a region of depressed water surface trailing just behind 
the disturbance. This phenomenon was numerically discovered by Wu & Wu (1982) 
based on the generalized Boussinesq model for describing two-dimensional long waves 
generated by moving surface pressure or topography. In  a joint theoretical and 
experimental study, Lee (1985) found a broad agreement between the experiment 
and two theoretical models, the generalized Boussinesq and the forced Korteweg- 
de Vries (fKdV) equations, both containing forcing functions. The fKdV model is 
applied in 'the present study to explore the basic mechanism underlying the 
phenomenon. 

To facilitate the analysis of the stability of solutions of the initial-boundary-value 
problem of the fKdV equation, a family of forced steady solitary waves is found. Any 
such solution, if once established, will remain permanent in form in accordance with 
the uniqueness theorem shown here. One of the simplest of the stationary solutions, 
which is a one-parameter family and can be scaled into a universal similarity form, 
is chosen for stability calculations. As a test of the computer code, the initially 
established stationary solution is found to be numerically permanent in form with 
fractional uncertainties of less than 2 yo after the wave has traversed, under forcing, 
the distance of 600 water depths. The other numerical results show that when the 
wave is initially so disturbed aa to have to rise from the rest state, which is taken 
as the initial value, the same phenomenon of the generation of upstream-advancing 
solitons is found to appear, with a definite time period of generation. The result for 
this similarity family shows that the period of generation, T,, and the scaled 
amplitude a of the solitons so generated are related by the formula T, = const a-k 
This relation is further found to be in good agreement with the first-principle 
prediction derived here based on mass, momentum and energy considerations of the 
fKdV equation. 

1. Introduction 
This paper is a continued study of the intriguing phenomenon whereby a forcing 

disturbance moving steadily with a transcritical velocity in shallow water can 
generate, continuously and periodically, a succession of solitary waves, propagating 
ahead of the disturbance in procession, while a train of weakly dispersive waves 
develop behind the disturbance. This phenomenon was discovered first numerically, 
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with its physical significance identified for the case of plane motions by Wu & Wu 
(1982) using the generalized Boussinesq model proposed by Wu (1979, 1981). 
Experimentally, this phenomenon was investigated by Huang et al. (1982) and by 
Sun (1985) for ship models moving in a towing tank with various transcritical speeds. 
A striking feature of the ship-model test is that the unsteady waves emerging 
successively to propagate ahead of a steadily moving three-dimensional ship model 
are invariably two-dimensional, spanning straight across the channel. Behind the 
ship model, one finds the three-dimensional wave pattern more commonly seen. 
Calculations were performed by Ertekin (1984) and Ertekin, Webster & Wehausen 
(1985) who employed Green-Naghdi’s directed-sheet model for numerical solutions 
to two-dimensional problems with similar results, which were used for qualitative 
comparison with ship-model experiments. The plane-flow case was also evaluated by 
Akylas (1984) and Cole (1985) based on the Korteweg-de Vries model with a singular 
forcing function, yielding similar qualitative results. Subsequently, this problem was 
analysed by Grimshaw & Smyth (1986) and Smyth (1986) applying the modulation 
theory of Whitham (1965, 1974). 

For the case of plane flow, a combined numerical and experimental study was 
carried out by Lee (1985) with a two-dimensional cambered topography moving along 
the horizontal floor of a water layer. The experimental results were predicted, with 
a broad agreement, by the corresponding numerical results of both the generalized 
Boussinesq and forced Korteweg-de Vries models. According to Lee, the agreement 
is especially satisfactory, when the depth Froude number (F = U/(gh,)i, U being the 
constant velocity of the forcing disturbance, g the gravitational acceleration, and h, 
the initial uniform water depth) is nearly of the critical value of unity and when the 
camber-height to water-depth ratio is appropriately small. 

Various attempts have been made to extend the two-dimensional formulation to 
a three-dimensional one. Mei (1986) derived an inhomogeneous KdV equation to 
analyse a slender ship hull and obtained upstream-propagating solitary waves. The 
problem of a three-dimensional surface-pressure distribution (simulating a ship hull) 
moving in a channel was evaluated numerically by Ertkin, Webster & Wehausen 
(1986) based on the Green-Naghdi directed-sheet model and by Wu & Wu (1987) who 
used the generalized Boussinesq equations. Recently, Katsis & Akylas (1987) 
calculated some three-dimensional long waves bounded by sidewalls using the 
Kadomtsev-Petviashvili equation. 

Historically, various aspects of this phenomenon seem to have been encountered 
earlier by several observers. The very first solitary wave, reported by John Scott 
Russell, that emerged and surged ahead from a boat suddenly stopped in a narrow 
canal might well be relevant. In a series of towing-tank tests of ship models in shallow 
water, this phenomenon was observed fifty years ago by Thews & Landweber (1935, 
1936), and was rediscovered, independently, with a new understanding by Huang 
et al. (1982) and Sun (1985). Aside from involving a Galilean transformation and some 
rather secondary effects such as the viscous boundary-layer growth, two closely 
related phenomena of upstream-propagating nonlinear waves and hydraulic jumps 
caused by external disturbances in recirculating water channels were observed by 
Favre (1935) when water was discharged into the channel, and by Binnie & Orkney 
(1955) who used surface gliding plates to transfer momentum and energy. In these 
earlier investigations the essential significance of the phenomenon seems to have 
escaped full attention, perhaps owing to lack of opportunities of making clear 
experimental observations over a long enough time to reveal the remarkable 
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periodicity of soliton generation in conspicuous contrast to the steadiness of a moving 
disturbance. 

Quite clearly, similar phenomena can occur in practically all soliton-bearing 
physical and biological systems. A closely related case is the flow of stratified fluid 
over a localized topography acting as forcing function, which has been the subject 
of several recent studies. In  a series of experiments, Baines (1977, 1984) observed 
upstream disturbances when the stratified flow was near a resonance. This basic 
problem was analysed by Grimshaw & Smyth (1986) and Smyth (1986). Also 
pertinent are the investigations by Patoine & Warn (1982) and by Malanotte-Rizzoli 
(1984) on the resonant forcing of Rossby waves by topography. Recently, a combined 
theoretical and experimental study of internal solitons produced by moving topo- 
graphy was made by Zhu (1986) and by Zhu, Wu & Yates (1986, 1987). Waves of a 
similar nature can also be generated by moving boundaries, as reported by Chu, 
Xiang & Baransky (1983) on nonlinear waves in plasma. Some analogous phenomena 
found in biological and other contexts have been discussed by Keller (1985). 

Several aspects of the new phenomenon appear remarkable, of which the foremost 
is perhaps the outstanding feature that the response of such a fluid-mechanical system 
to a steadily moving disturbance can be unsteady when the system is in resonance 
and can contain a conspicuous time-periodic component. Generally speaking, its 
physical significance can be attributed to a well-balanced interplay between the 
nonlinear and dispersive effects. In this transcritical speed range, the dispersive effect 
is weak, so the velocity of propagating mechanical energy away (by means of 
radiating long waves) from the forcing disturbance is about equal to the velocity of 
the moving disturbance. The local wave will therefore grow as the energy acquired 
by local fluid at the rate of work by the moving disturbance keeps accumulating. 
When the local wave reaches a certain threshold magnitude, the increase in phase 
speed with increasing amplitude (due to the nonlinear effects) will be sufficient to 
make the wave break away from the disturbance, thus ‘born free ’ as a new solitary 
wave propagating forward with a phase velocity appropriate to its own amplitude. 
The process is then repeated over a new cycle. While this physical reasoning seems 
adequate to explain why, it falls short of explaining how the phenomenon is 
manifested. 

To pursue the investigation further, we might raise some stimulating questions 
such as : What is the basic mechanism that causes the periodic generation of solitons ? 
Can we predict accurately, not by purely numerical methods as has been done, the 
period of generation of these upstream-running solitons? What is the boundary in 
the space of the key parameters involved that separates the regions of occurrence 
and non-existence of the phenomenon ? 

This paper is a preliminary study aimed a t  determining the basic mechanism 
underlying the phenomenon. In  order to ascertain if the phenomenon is manifested 
owing to a nonlinear instability of stationary solution and a bifurcation into a 
time-periodic solution, an analysis is initiated here first to study the solutions of the 
initial-boundary-value problem of the forced Kortewegae Vries (fKdV) equation, 
which is derived in $3. In $4, a first-principle theorem is developed based on mass, 
momentum and energy considerations of the fKdV equation. In  $5,  a family of an 
infinity of steadily moving forcing functions is found, each of which gives rise to a 
forced steady solitary wave (of permanent form) as an exact solution of the fKdV 
equation if the same solution existed initially. In  $6, a perturbation theory is 
formulated for investigating the nonlinear stability of forced steady solitary waves 

~ 
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when such a wave is given a finite perturbation. For definiteness, the perturbation 
is taken as arbitrary depature of the initial value of a perturbed motion from the 
stationary solution. Specific consideration is given to a special one-parameter family 
of forced solitary waves, with proper choices of forcing function and initial value so 
that the single parameter can be eliminated by a similarity group transformation. 
The solution to this perturbation problem is then determined numericalljr with two 
limiting cases of initial values. The results show that the stationary solution remains 
stable if the initial perturbation (depature from stationary solution) vanishes. But 
when the rest state is taken as the initial value, this impulsive perturbation turns 
out to be so strong that the same phenomenon of the generation of solitons is 
numerically found to appear, like that produced by arbitrary forcing functions, with 
a definite time period of generation. This numerical result (in similarity form) yields 
a set of rules which are found to be in good agreement with the first-principle 
prediction given in $4. It is hoped that this study will cast some light on the 
development, of general methods for evaluating forced nonlinear waves. 

2. The generalized Boussinesq model 
The phenomenon of periodic generation of solitary waves by a two-dimensional 

disturbance moving steadily with a transcritical speed through a layer of water 
initially uniform in depth was numerically identified by Wu & Wu (1982) using the 
following pair of equations of the Boussinesq class (which is a special case of the 
equations derived by Wu 1979, 1981) for modelling forced two-dimensional long 
waves in the vertical (x, %)-plane: 

Ct+[(h+C)uIz = - 4 9  (1) 

where the subscripts x and t denote partial differentiation. Here x is the horizontal 
coordinate, t is the time, g is the gravitational acceleration pointing in the negative 
z-direction, z = C(x, t )  is the free-surface elevation, z = -h(x, t )  = -h,+ b(x, t )  indi- 
cates a topography b(z ,  t )  which may move over the bottom floor at depth h, (h, being 
a constant), u(x, t )  is the water-layer depth-averaged s-component velocity of the 
fluid, p is the constant fluid density, and p,(x, t )  is a given ambient pressure acting 
on the free surface. This generalized Boussinesq model is assumed to hold for weakly 
nonlinear and weakly dispersive long waves such that 

where u is a typical wave amplitude and h is a typical wavelength. The model admits 
as external forcing disturbances the surface pressure pa@, t )  and topography (or 
‘bump ’) b(x ,  t ) ,  which are supposed to be slowly varying functions such that 

where co = (gh,)f. With these forcing disturbances, (1) is exact while the momentum 
equation (2) has a relative error term (with respect to the leading term) of O(as, 8)  
(see Wu 1981). It is in this sense that the classical Boussinesq model, originally 
introduced for closed fluid-mechanical systems modelled by (1)-(3) with 
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h = h, = const. and pa = 0 and characterized by their initial values and by fixed 
boundaries, is extended in applicability to open systems which may evolve with 
exchange of mass, momentum and energy with some external agencies and may have 
moving boundaries (for exchanging momentum and energy) as prescribed forcing 
functions. 

Since the generalized Boussinesq model still seems too complex to be used for 
investigating hydrodynamic stability of the fluid motion generated by a steadily 
moving disturbance, we now turn to explore a simpler model, which is the forced 
Korteweg-de Vries (fKdV) model. 

3. The forced Korteweg-de Vries (fKdV) model 
Like the generalized Boussinesq model, the classical KdV equation can be extended 

to admit arbitrary forcing functions if the forcing disturbances are limited to 
unidirectional motion, say 

pa = pa@+ Ut), b = b(x+ Ut), (5 )  
representing a left-going (or right-going) surface pressure and topography when U 
is positive (or negative). These forcing functions are supposed to be sufficiently 
smooth, localized, square-integrable in x( - a, a), end to vanish identically for t < 0. 
We further assume that the constant U is nearly critical so that the depth Froude 
number 

U 

CO 
F = - = 1 +€SF, (c, = (gho)i), (6) 

where S, = O(1) is a detuning parameter measuring how close the flow is to resonance 
(which by linear theory is when 8, = 0) .  

To deal with this class of weakly forced motions, we adopt the stretched coordinates 

5 = Ax*, 7 = dt*, ( 7 4  

x+ ut , t * = -  cot x* = - 
h0 ho ’ 

and we assume the following asymptotic expansions for f = u*, &, pa*, and b, : 

f(x,t;4 = €f1(5,7)+€”fs(f,7)+0(9), ( 8 4  

where 

Here x* is the coordinate fixed in the body frame of reference (i.e. moving with the 
surface pressure or the topography) and 7 is a slow time. Substituting (7 )  and (8) in 
(1) and (2), with h = h,- b ( z ,  t ) ,  we obtain for the first-order terms the equations 

Upon integration of (9) and (10) from the rest state at infinity, it follow8 that 

h = -up (11) 

pal = 0, b, = 0. (12) 
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The last two compatibility conditions on pa and b are necessary for the solvability 
of 5, and u1 if both pa and b are to be arbitrary as assumed. The second-order terms 
in (1) and (2) then give, with use of (12), 

(14) 
a a 
87 a t  
-ul +- [C2 +u2 +p2 ++ul u1 -6, U1--+Ul&] = 0. 

From these equations the second-order variables can be eliminated to yield, with use 
of (l l) ,  an evolution equation for Cl, which can be immediately recast for c*(z*, t * )  
as 

(15) 

where all the variables and the forcing functions are understood to assume the 
dimensionless form (see (7b) ,  ( 8 b ) ) ,  now with the * omitted. This is the forced 
Korteweg-de Vries (fKdV) equation, which is seen to hold with a relative error term 
of O(e2). To the same order of expansion, the sum of (13) and (14) yields a relationship 
between u and 5 as 

In dimensional form, (15) becomes 

6 + [(P- 1) -%a 5z -Kzzz = +@a +b)z,  

u = -(6-iF)-Kzz-i@a-b)* (16) 

This equation holds for left-going (or right-going) waves when U and co are both 
positive (or both negative), which amounts to having the sign changed for the term 
with Q in (15) and for that with u in (16) for the case of right-going disturbances. 

Mathematically, we should note that in the absence of forcing, the classical KdV 
equation is completely integrable (see Gardner et al. 1967; Whitham 1974; Miles 
1980; Dodd et al. 1982). In  the presence of forcing, the fKdV equation is not known 
to be integrable, and solutions can be obtained only by numerical and perturbation 
techniques. And, similar to the uniqueness proof for the KdV equation (see Lax 
1968), the solution of the fKdV equation can be shown under certain conditions to 
be uniquely determined given the forcing functions and the initial value; a proof is 
given in the Appendix. 

We further note that the first-order compatibility condition of the fKdV model 
requires the forcing functions pa and b to be of O(e2) by virtue of (12), a requirement 
that is stronger than (4) assumed for the generalized Boussinesq model. Further, for 
the fKdV model, the surface pressure pa and topography b are seen from (15) to be 
entirely equivalent (in their dimensionless form), whereas for the generalized 
Boussinesq model there exists some, though rather mild, differentiation between 
them. In practical application, the fKdV model therefore implies that the resulting 
motion induced by a horizontally moving thin body would not depend on the body’s 
depth of submergence. 

The refined differences between the two theoretical models have been investigated 
by Lee (1985) in a joint theoretical and experimental study. The moving disturbances 
used for numerical computation (which was carried out with reference to the fluid 
frame) assume the distribution 

(18) 
27c 

(2+ Ut)] (-+L < (5+ Ut) < iL),  
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and P = 0 elsewhere, where P(z,  t )  represents p,/pgh,+b/h,, and P, is a constant. 
The motion is assumed to start impulsively with the initial conditions 

[(z, 0) = - h, P(z,  0 ) ,  u ( z , O )  = 0, (19a) 

&,O) = 0, u(z,O) = 0, (19b) 

for the surface pressure and floor topography modes, respectively. This initial-value 
problem has been solved numerically over a transcritical speed ranget. The numerical 
method developed by Wu & Wu (1982) and later made more efficient by Lee (1985) 
is based on the modified Euler’s predictor-corrector algorithm in advancing time and 
the central-difference approximation for the space derivatives. A mixed impliciG 
explicit scheme is adopted for the forward-difference computation of [ and u, the 
implicit part being incorporated in order to achieve the desired numerical stability 
and accuracy with a relatively large time-step At (0( 10-l) in dimensionless form). As 
an effective ‘open-boundary condition ’ for the two boundaries of the computation 
region use has been made of the empirical equation 

Qt f c,  &, = 0, (20 1 
where Q = [ and u, and the + and - signs are for the downstream and upstream 
boundaries, respectively, so as to guide the wave to leave the region of computation 
at the rate of linear phase velocity c, = (gh,)k This condition was found to be so 
effective that it can maintain the boundaries almost free of non-physical reflections 
(leaving only some minute residual reflection with a relative error of 0(10-3) or less 
due to various sources of imperfection) and thereby enhances the numerical stability. 

The general features of the numerical results within a narrow transcritical range 
can be seen from the following typical examples of the fKdV model: 

P, = b,,, = 0.2, h, = 1, L = 2, F = 1.0; 
h0 

P, = = -0.2, h, = 1, L = 2, F = 1.0. (22) 
h0 

Here (21) describes a positive surface pressure (or a bottom topography) and (22) an 
equal and opposite one, both assuming the same distribution given by (18), and both 
moving at the critical speed of U = c,. The corresponding numerical results are shown 
in figures 1 and 2. A conspicuous feature of the result is that, after the surface pressure 
has been exerted and kept moving at the critical speed for a definite period of time, 
a solitary wave emerges just ahead of the disturbance, and eventually breaks away 
to propagate forward as a free solitary wave, forming an entity (rising entirely above 
the initial undisturbed water level) which we may call a ‘precursor ‘soliton’, or a 
‘runaway soliton’. This is followed by another new solitary wave going through the 
same cycle, and this process seems to continue periodically and indefinitely. 

Immediately behind the moving topography there trails an ever-longer region of 
depressed water, of nearly uniform depth, which is in turn followed by a train of 
cnoidal-like waves oscillating about the initial free-surface level, with the wave height 
decreasing with distance and with the train length increasing with time, and 
eventually merging with the undisturbed water further behind. The excess mass of 

t In our calculations, as is the established practice, to ensure numerical stability (15) is replaced 
by the ‘regularized KdV equation’, which is obtained by replacing [,,, in the dispersion term in 
(15) by c,,, + Fcz2, (see (58); and Benjamin, Bona & Mahoney 1972). 
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FIQURE 1. Numerical results of the forced KdV model (15) for the surface wave elevation C: 
(calculated with intervals Ax = 0.2 and At = 0.1 and shown with an equal time increment of 2.0) 
and the wave resistance coefficient C,, (with asymptotic mean of ch = 0.044) due to the cosine 
forcing distribution (18) with positive forcing (21) : P, = 0.2, L = 2.0, and F = 1.0. The first three 
upstream-progressing solitons are generated at t = 24.5, 56.8 and 89.2 (the maxima of Ch), with 
a period of T, = 32.4. ----, initial undisturbed wave surface shown as reference at t = 100. 

the upstream-advancing solitons was found to come almost entirely from the region 
of surface depression. 

Also shown in figure 1 is the drag (which is the resistance due to unsteady wave 
making) D, experienced by the moving disturbance (per unit width) which, based 
on the fKdV rule of equivalence of pa and b, is given by 

and has the coefficient c =D, 
Dw pgh, L ' 

The numerical result for C, given in figure 1 for positive forcing shows that the drag 
oscillates nearly sinusoidally about a positive mean value of cDw = 0.044, reaching 



Generation of solitons by moving disturbances 83 

X 

0.10350 - 

=D” 

200 
-0.03173 

t 
0 

FIGURE 2. Numerical results of the fKdV model for surface elevation and wave resistance 
coefficient C,, (with mean ch = 0.036) due to forcing distribution (18) with negative forcing (22): 
P, = -0.2, L = 2.0, and F = 1.0. The first three upstream-progressing solitons are generated at 
t = 40.8, 75.6 and 110.4, with a period of T, = 34.8. For the other symbols, see figure 1 caption. 

a maximum (or minimum) when the free surface at the leading edge of the forcing 
disturbance is at the highest (or the lowest) elevation. The duration from the time 
of a minimum drag to that of the next maximum drag may be called the ‘growth 
phase ’ and the remainder of the period the ‘departure phase ’ for production of a new 
soliton. As the period of CDw variations is well defined, it will be used as the standard 
value for the soliton generation period T,. Thus T, = 32.4 for the positive forcing 
shown in figure 1. 

For the case of negative forcing shown in figure 2, it  is of interest to note that (a)  
the drag has a slightly longer period than in the case of positive forcing, with 
T, = 34.8 here; (b) the instantaneous drag fluctuation is skewed in phase (suggesting 
that it has two or more harmonics) and with a larger magnitude than in the case of 
positive forcing, even becoming negative within a small part of the period but it has 
a positive mean of CDw = 0.036 ; and (c) the depressed water region behind the forcing 
is not as uniform in depth as in the former case, apparently owing to a succession 
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of very small waves traversing backward across the region, recoiling from the forcing. 
Further, a closer examination of the numerical results shows that (d) the local wave 
continues to be excited to a relatively quite large amplitude within the region of the 
(negative) forcing before it breaks away, soon to settle to a smaller height after 
departure, as if in overcoming a threshold. These features are common to all negative 
forcings. 

Without further detailed comparison between theory and experiment, we may 
summarize the findings by Lee (1985) as follows. Both the generalized Boussinesq and 
XdV models are found to be in broad agreement with the experimental results for the 
topography mode, particularly when the speed is nearly critical (0.9 < F < 1.1) and 
when the disturbance is not excessively strong (P, < 0.15). Further details can be 
found in Lee (1985). With the validity so established, the fKdV model therefore 
appears especially appropriate for the analytical development of a stability theory 
for forced nonlinear waves, primarily because of its simplicity. 

Before we pursue this course, it is worth noting that the solutions given in figures 
1 and 2 illustrate the following salient features: (i) the existence of the unperturbed 
uniform state both ahead of the precursor solitons and behind the trailing wavetrain; 
(ii) the existence of another uniform state in the region of depressed water immedi- 
ately behind the disturbance; and (iii) the time-periodic generation of solitons, the 
typical time period being found to be large on the scale of h,/co. These unique features 
can be utilized for carrying out mass, momentum and energy considerflhions based 
on the fKdV model to obtain a set of approximate relations between key flow 
quantities, as discussed by Wu (1985, 1986), and will be shown below. 

4. A mass, momentum and energy theorem 
We consider the nonlinear wave problem illustrated in figure 3. In the body frame, 

as shown in figure 3 (b), the incident flow comes from the free-stream uniform state 
with water depth h, and velocity U .  Here for simplicity we shall limit ourselves to 
the critical case of U = c, = (gh,)t so that the Froude number F = U / c ,  = 1, since 
extension to small values of IF- 11 is straightforward. The length, time and velocity 
will be scaled, as before, by h,, h,/c, and c,. The main features of the flow described 
above will be taken as given for carrying out the present mass, momentum and energy 
considerations. Thus the flow in the vicinity of the obstacle is not steady, but 
undergoes a cyclic motion, producing solitary waves to progress upstream with 
velocity c,- U relative to the body (or the topography), c, being the amplitude- 
dependent phase velocity in the fluid frame. There are two more regions of uniform 
state, one being with depth h, and fluid velocity U, in the region of depressed water 
just behind the topography and the other being the free-stream state recovered 
downstream of the wavetrain. The leading wave of the trailing wavetrain and its 
distal end recede rearward with velocities U-cgl  and U-cgo,  respectively, cgl and 
cgo being the pertinent (amplitude-dependent) group velocities with reference to the 
fluid frame. Three typical stations fixed in these three regions of uniform state are 
designated by x = xo, xl, and z2, while xL and xT refer to the leading and trailing edges 
of the topography. 

In the vicinity of the obstacle, new solitary waves are generated periodically, with 
time period T,. Variations in wave properties are assumed sufficiently gradual (T, 
large on the scale of h,/c,) for local and regional averages to be definable over periods 
of T,. Each new solition generated, with amplitude a( = aho), contributes an excess 
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FIQURE 3. Illustration of transcritical water-wave problem: (a) an obstacle moving at constant 
transcritical velocity U in a uniform layer of water initially at rest; (b)  obstacle fixed in a uniform 
stream of velocity U. 

mass m, and total energy E, to the upstream side of the topography, where, in 
dimensionless form, 

m, = 4($)f, E, = 8(&);. (25) 

For F = 1, the fKdV equation (1 5 )  (in the body frame) becomes 

where P is given in zL < z < zT and vanishes elsewhere. Integrating (26) from z = q, 
(at which 5 = 0) to z1 (at which 5 = hl- 1 < 0), we have 

which has the average 5 = $(I -hl)Z. 
T, 

Here, the result mJT, 2 0 also implies, by a mass-conservation argument, that 
0 < h, < 1. Integrating (26) from z = zo to the leading edge of the topography at zL 
gives 

- 
where CL(t) = C(zL, t ) ,  with the compositions cL = cL+&(t), ZL being the average of 
CL(t). The oscillatory component 5; will be assumed small in amplitude (compared 
with ltLl) on the physical grounds that a mean slope of the water surface is needed 
to provide the rate of work by P required for overcoming the wave resistance, and 
Ci relatively is a slow and weak modulation. We shall take the case of positive forcing 
(or vice versa for negative forcing) where there is an extra horizontal pressure gradient 
from the trailing to the leading edge of the forcing distribution, rendering EL greater 
than tT, the mean elevation at the trailing edge. We further assume that c has a 
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negligible curvature as expected of long waves. Then the above equation has the 
average 

(28) - ms = i ( Q 2 .  

T, 
- 

Hence, by (27) and (28), CL = 1-h1. (29) 

For the energy consideration, we integrate the product of (26) with C from x = xo 
to zl, giving 

which has the average 

A separate account for the energy conservation between x = xo and the leading edge 
zL yields, under the same assumption as that invoked in attaining (28), the relation 

- 
(31) - Es = = (1 4 ~ 3 .  

T, 
Next, the ratio of Es/ms derived from (25), (27) and (31) gives 

whence a = 2(1 -hl). (33) 

The period of generation T, can now be expressed, by using (25) and (27) or (31), in 
terms of a single parameter as 

64 12.3 T,=-- 
( 3 4  - T -  (34) 

The mean drag coefficient can be deduced from (30)-(34) as 
- 
c D w  = %.". (35) 

The cnoidal-like wavetrain trailing the region of a nearly uniform flow (with a 
depressed surface) behind the forcing, which may seem at first glance to resemble an 
undular bore, has some refined features of its own. Classical bores and undular bores 
usually describe a transition between an incoming uniform stream and an ensuing 
one, generally pertaining to steady transitions of a closed hydromechanical system 
with internal dissipation. Benjamin & Lighthill (1954) showed that steady inviscid 
bores, or broadly the transitions from a uniform stream to a uniform wavetrain with 
the same values of volume flow rate, specific flow energy (per unit mass) and specific 
flow force (the total momentum flux) (Q,  R, S in the original notation) are impossible. 
Thus, a uniform train of cnoidal waves cannot form an undular bore. With time and 
space variations allowed, the development of inviscid bores from initial states has 
been investigated by Peregrine (1966) for continuous distributions and by Fornberg 
& Whitham (1978) for steps and well forms. These studies still pertain to closed 
systems. 

A new feature of the unsteady trailing wavetrain in the present case is that both 
the amplitude and length of the wavetrain grow with a continuous intake of energy 
from the forcing disturbance, thus signifying a system open to external excitation. 
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To determine this energy supply, a simple approach is to integrate the energy 
equations of (26) from 5 = 2, to 2 = zz, with the result 

The time average of this equation gives 

where ETw represents the energy that the trailing wavetrain receives from the forcing 
disturbance. This rate of increase in wave energy implies that the forcing agent must 
overcome a resistance, in coefficient form, of the value 

which is a component of the total wave resistance CDw. Unlike the wave-resistance 
component pertaining to the generation of upstream-advancing solitons, which is 
time periodic, the component CDs associated with the trailing wavetrain soon becomes 
steady, after shedding distally the first few waves. 

In  addition, we can obtain a few more relationships of kinematical interest. From 
the continuity relation between stations xo and xl, Uh,- U, h, = m,/T,, we obtain for 
the Froude number Flo = UJc,  of the depressed flow behind the topography the 
result 

1 
F,, = j-[l -4(1 -h1)2]. (38) 

For the motion of the trailing wavetrain, let the zero-crossing (6 = 0) of the leading 
wave in the train move backward with velocity U,, relative to the obstacle. By 
considering mass and momentum conservation in the frame fixed to the trailing wave, 
one can find that 

(39) 

From the above we immediately see that provided cDw 3 0 (for otherwise we would 
have had a perpetual machine), we have a 3 0 by (35), 0 < h, < 1 by (33), and 
F,, 2 1 (supercritical) and &, < 1 (subcritical) by (38) and (39). 

Finally, we note that the relationships between key flow quantities given by the 
present first-principle theorem, falling short of producing the detailed solution like 
all momentum theorems, still depend on two flow parameters, namely, the Froude 
number P (which is a free parameter, equal to 1 here) and any one of the other 
quantities involved (whose value may be empirically furnished), e.g. the mean 
wave-resistance coefficient Ch, to which there can correspond different forcing 
distributions. 

For a comparison between the present approximate predictions and numerical 
results, calculations were performed for the cosine forcing distribution (18) with 

&c = - uoc = 1 - [&( 1 + hl ) ] f .  
CO 

P = l ,  P,=O.l, h , = l ,  L = 2 .  (40) 

The main numerical results are presented in figure 4 ; they provide the following data 
given in table 1 for comparison with the approximate predictions based on the same 
value of h,. The approximate predictions are in good agreement with the numerical 
results and well represent other cases not shown. 
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FIGURE 4. Numerical results of the fKdV model for some pertinent flow quantities generated by 
the cosine forcing function (18) with Pm..= 0.1 at Froude number F = 1 : (a) 1 -h,, sL, cT (the wave 
elevation at xlr xL and xT); (b) wave resistance coefficient Ch; (c) wave profiles at t = 60 (---), 
and at t = 120 (-); Id) Lo, is the distance between the trailing edge xT and the zero-crossing 
of the first trailing wave. (Here the leading and trailing edges of the topography are at xL = 50 
and xT = 52.) 

Equation 

base 
(33) 
(29) 
(34) 
(35) 
(38) 
(39) 

Approximate prediction 

1-h, = 0.18 
a = 0.36 
sL = 0.18 
- 

T, = 57 
?7& = 0.012 

= 1.19 
F,, = 0.8 

Numerical result 

1-h, = 0.18 
a = 0.355 
cL = 0.18 
T, = 58 

C,, = 0.013 
F,, = 1.20 
4, = 0.89 

- 

- 

TABLE 1. Comparison between numerical results and an approximate prediction 

In concluding this comparative study, we remark that the present theorem does 
not preclude the particular class of transcritical forcing functions that can maintain 
the fluid response being locally confined and permanently stationary. Such forced 
steady solitary waves do exist and they must necessarily have zero drag coefficient, 
C = 0, for then a = 0 by (35), h, = 1 by (33), implying that no upstream-advancing 
solitons will be generated. This important particular class will be investigated below. 

D? 
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5. Forced steady solitary waves 
It is of basic interest to find exact solutions of the fKdV equation (15) that belong 

to the class of forced solitary waves of permanent form when coupled with 
appropriate steadily moving forcing functions. These solutions can play several 
significant roles. First, they may be used to gauge the uniform validity of any 
approximate method used for the fKdV model. Moreover, they can provide an initial 
basis for developing nonlinear stability theory for the fKdV class of flows. 

A forced permanent solitary wave is required to satisfy the equation 

(P- 1)c - i e -gZz  = tP(x) ,  (41) 

which is the first integral of (15) obtained with ct = 0, and to satisfy the regularity 
conditions that C and P vanish at x = f 00. Here P(x) = p,(x) + b(x )  represents in 
totality the disturbances pa and b. Equation (41) has the following time-independent 
solutions, which decay exponentially at infinity for a given N (N = 1,2, . . . ) : 

Cs = I: a, sech2, kx,  (42) 

P = 2 b, sechan kx, (434  

N 

n-1 

2N 

n-1 

3 n-1 

4 m-1 
b,=Pna,+k2B,a,-,-- Z aman-, ( n =  1,2 ,..., N + 1 ) ,  (43b) 

3 N  
b , = - -  I: aman-, ( n =  N+2 ,..., 2N), 

m-n-N 
(43 4 

F, = (P- l)-$k2n2, (434  
B, = +(n- 1) (2n- i), (43 4 

where the an are real Constants, an = 0 for n < 1 and n > N being understood. 
Equations (43b-e) are 2N relations between (bl, ..., beN) and (al, ..., a N ) .  It is 
therefore clear that in general, (bl, ..., bzN) and hence P(x) cannot be arbitrarily 
prescribed since in the physically direct, mathematically inverse prescription with 
the b,  arbitrarily given, there may be no real solution for all the an. But one can 
always take the mathematically direct, physically inverse approach by regarding 
(al, ..., a N )  as generalized coordinates for prescribing 5, and hence have P uniquely 
determined by (43). Following the latter approach, we then see that by a uniqueness 
argument (see the Appendix), the solutions given by (42) and (43) are unique, 
stationary solutions of the fKdV equation (15) provided they further satisfy the 
initial condition 

(44) 
Thus, (42)-(44) constitute a family of an infinity of time-independent solutions of the 
fKdV equation (15). All these forced steady solitary waves are localized (falling off 
exponentially at large distances) and are symmetric with respect to z = 0. However, 
aside from accompanying the solitary wave by moving steadily at some feasible 
Froude number 3 (which can be rather arbitrarily assigned, even to subcritical values 
in some cases), the forcing function P(x) does no mechanical work. In  fact, the 
symmetry of and P (both being even in z) implies that the wave-resistance integral 
in (23) vanishes, 

[(x,  0 )  = f ( x )  ( -  00 < x < 00). 

D, = 0. (45) 
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The same result is obtained upon integration of the wave-resistance integral using 
(41). This is expected on physical grounds since when (44) is also satisfied, the steadily 
moving wave has no initial excess energy to radiate off the forcing region, and this 
implies that the excess energy will remain zero. 

For given N, the solution is characterized by (F, k, a,, . . . , aN)  as N + 2 parameters. 
One of the simplest members of this family of solutions is the one-term forced soliton 

6, = a sech2 kx, (464 

with b, =Flu ,  b, = a(k2-+), b, = b, = ... = 0. (46b) 

Here the subscript of a, has been omitted for brevity. Three special cases are of 
particular interest : 

(I) One-term forcing function I :  the choice of b, =I= 0 and b, = 0 gives 

I&, = a sech2 kx, a = ik2, 

P,, = 2b1 sech2 kx, 

b, = I ( u ,  4 = (F-l)-$k2. (47 4 

c,, = a sech2kx, (48a) 

P,, = 2b, sech4 kx, (48b) 

(48c) 

(11) One-term forcing function I1 : the choice of 4 = 0 and a 9 0 gives 

F 1 = F- 1 -$k2 = 0, b, = a(k2-+), 

which is the solution obtained by Patoine t Warn (1982). 
(111) Vanishing forcing function: the choice of a + 0, I( = 0 and b, = 0 gives 

c,, = a sech2 kx, a = ik2, (49a) 

F=F,= l++ ,  (49b) 

P = O ,  (49 c 1 
which is the familiar free-soliton solution and is the limiting case of the previous two 
families of forced solitons as the forcing functions P,, and P,, tend to zero. We note 
that for type I forcing, (47c) shows that F,, and hence the Froude number F can be 
chosen rather arbitrarily, and can even be subcritical. Here in case (I), [,, is always 
a positive wave and the forcing function P,, is positive or negative according as F 
is > or < F, = 1 ++, respectively. For type I1 forcing, however, F can only be 
supercritical and it is necessary that b, < ik4 to render a real. We further note that 
the class I forced soliton (47a) and free soliton (49a) have the same shape function, 
but they generally have different phase velocities. 

Finally, we remark that the initial condition (44) seems sufficient to ensure that 
a forced steady solitary wave, if once established, will remain permanent in shape 
as long as it is accompanied by the congruent forcing function. However, it is not 
known whether, if (44) is not satisfied, by whatever the margin, there will always be 
a finite difference between the resulting motion (satisfying the fKdV equation) and 
the stationary solution for the same forcing function. This possibility naturally leads 
to the question of the stability of forced steady solitary waves. 
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6. A perturbation theory for soliton generation 
Suppose a forced steady soliton solution f(x) of (41) is given an arbitrary (but 

sufficiently smooth) initial perturbation qo(x ) ,  which we shall regard as the initial 
value of a ‘perturbation function’ q(x, t ) .  The problem of primary interest is to 
determine the stability of the resultant motion : 

a x ,  t )  = f@, +7@, t ) ,  (50) 

which is required to satisfy the fKdV equation (15). Substituting (50) into (15) and 
noting that c&Jx) satisfies (41), we obtain for 7 the following homogeneous evolution 
equation : 

The problem then becomes one of calculating 7 from (51) under the initial condition 

q(x ,O)  = 7#Jo(x) ( -CO < x  < 00). (52) 

A closely related problem is to study the linear stability of the perturbation ~ ( x ,  t )  
which is governed by the linearized equation of (51), 

By separation of variables, 7@, t )  = eUtf(2), (54) 

the linear stability analysis reduces to the calculation of the eigenvalues u of the 
ordinary differential equation 

for - 00 < x < 00, with the solution vanishing at x = & 00. This eigenvalue problem 
does not seem to have been resolved. 

Let us take recourse to numerical experiments using the original nonlinear equation 
(51) and take for cs the simple solution c,, given by (47). With this choice of &,, we 
note that by applying the following similarity transformation : 

7 = k27‘, X‘ = kx ,  t’ = kst, F- 1 = k2(F-  l),  (56) 

(5 1 ) becomes 

where the primes have been omitted for q‘, x‘ and t’ (but not for F and 
of identification, and the prime may be restored when needed) and 

for ease 

C i  = sech2 x. (57 b )  

Thus we see that all the k have cancelled out in (57a, b) and hence the solution 7 (or 
rather 7’) will not depend on k if the initial condition 

17(GO) = To(“) (57 4 
is also independent of k .  After the parameter k is so eliminated, the computation 
seems to be greatly simplified to one for the universal cwe prescribed by (57a-c) in 
which only one parameter, namely F ,  remains. However, it is essential to recall that 
in order to avoid certain ill-conditioned numerical instabilities, it  is necessary to 

4 F L I  184 
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FIQURE 5. Numerical results of the fKdV model exhibiting the very high degree of stability of the 
forced steady solitary wave (47u-c) when initially so established, moving at F = 1 under stationary 
forcing P = 2b, sechB kx, with k = 0.6124 (a = 0.5) and amplitude P, = 2b, = -0.25, over the 
duration 0 < t < 600 (with a relative error less than 2 yo after having traversed over a distance of 
600 water depths). Calculation waa made with Ax = 0.05 and t = 0.025). 

employ not the original but the regularized fKdV equation, which reads in the body 
frame (moving to the left with velocity U = co P), in dimensionless form, as 

For given P and initial condition, the solution of (58) has, with respect to the 
solution of the original fKdV equation (15), an error factor [1+0(1d)], which is 
[l +O(k*a)] in terms of the similarity variables defined in (56). Thus, the smaller the 
value of k, the more accurately the regularized fKdV equation can approximate the 
original fKdV equation, or equivalently (57). On the other hand, the smaller the value 
of k, the larger the number of time-steps that will be required for computation 
according to the similarity relation. Therefore, an optimum choice of the range of 
k-values was made for the computation as desired. 

Keeping this in mind, we have carried out two series of calculations to numerically 
investigate the stability of q.  In  the first, the initial value of 6 assumes the forced 
steady solution without any perturbation, 

C;(z,O) = C&), or q(z,O) = q o ( 4  = 0. (59) 

The results of all the cases computed under condition (59) show that the initial 
stationary solution remained virtually permanent in form while being accompanied 
by the steady forcing. As exemplified in figure 5 for the critical case of F = 1, with 
k = 0.6124 (a = 0.5) and forcing amplitude P, = 2b, = -0.25, the forced steady 
solitary wave, when so established initially, remained globally stable over the 
duration 0 c t c 600 for which computation was executed, with only a relative error 
less than 2 % after the wave had traversed the distance of 600 water depths. As this 
relative error is consistent with those for free solitary waves computed by the present 
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FIQURE 6. Numerical results of the fKdV model showing the evolution of waves generated from 
the initial state of rest by stationary forcing (47b) at F = 1, with k = 0.1936(a = 0.05) and 
amplitude P, = -0.0025. The wave-resistance coefficient varies with period T, = 1,090. 

numerical method, the result may thus be regarded as signifying that small numerical 
perturbations (which would be inevitable) remained small throughout the comput- 
ation. However, this result does not necessarily imply stability of the forced 
steady -state solution. 

In  the second series of calculations, the rest state of [ was assigned as the initial 
value, namely, 

This initial deviation from the steady-state solution is but one of infinitely many 
possible choices M a perturbation of the stationary solution. Nevertheless, it is the 
most convenient of all choices for making comparisons with experiments, both 
existing and new, &g well as with those forcing functions that do not possess stationary 
solutions. By using the regularized version of (15) and the numerical code specially 
developed for this purpose, results have been obtained for the generation and 
evolution of forced long waves for the critical case of F = 1, with some of the results 

C(z,O) = 0, or q,(4 = q(s ,O)  = - C S W  (60) 

4-2 
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B e by stationary 
forcing (47b) at F = 1, with k = 0.2739 (a = 0.10) and amplitude P, = -0.01. The wave resistance 
varies with period T, = 387. 

presented graphically in figures 6-8 over a range of the parameters involved and with 
some pertinent flow quantities listed in table 2. In the cases computed under 
condition (60), new waves are invariably found to evolve from the initial disturbance 
given by (60), leading in time to the process of periodic generation of upstream- 
advancing solitary waves, with a definite period in each case, and with the mean 
height of the first three precursor solitons denoted by a. On the downstream side, 
they are followed by a lengthening region of depressed water, and further behind by 
a lengthening train of cnoidal-like waves. The main features of the wave system 
developed by this family of forcing are thus very similar to those found earlier for 
the moving cosine-shaped topography as shown in figures 1 and 2. 

To obtain the universal constant value for Ti (the period of soliton generation) for 
,the system (57a, b) and (60) (in the similarity form), we exploit the numerical results 
for T, determined from the regularized fKdV equation as given in table 2, which by 
extrapolation to k = 0 yields 

Ti = 7.9( k0.04). (61 1 
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FIGURE 8. The fKdV-model results for waves generated from the initial rest state by stationary 
forcing (47b) at F =t 1, with k = 0.6124 (a = 0.50) and amplitude P, = -0.25. The wave resistance 
varies with period = 38. 

a k P, = 2b, T, Ti = T s P  ACD/P a 

0.05 0.1936 - 0.025 1,090 7.91 7.71 0.046 
0.10 0.2739 -0.01 387 7.94 7.50 0.092 
0.50 0.6124 -0.25 38 8.6 7.65 0.50 

TABLE 2. Flow quantities 

Restoring the original variable by (56)' we therefore have 

or in terms of the amplitude a( = $k2) of the forced steady soliton 
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or based on the amplitude Pm( = -a2) of the forcing function, 

11.5 q=- 
IPmI" 

These are the various similarity relations for the period of soliton generation for this 
one-parameter family under the initial condition (60) for the critical case of F = 1. 

It is of interest to compare the above solution for T, with the approximate formula 
(34) obtained by mass, momentum and energy considerations : 

12.3 q=- a! ' 

The two formulas (63) and (34) are very similar in form; they in fact can be further 
reconciled. Although a and a are different by definition (a being the amplitude of a 
forced steady soliton and a the amplitude of a free solitary wave), they are found 
here (for the case of F = 1) to be nearly equal (within a 10% difference) as shown 
in table 2, where the a-value represents the numerical mean height of the first three 
precursor solitons. This may be expected on the physical grounds that precursor 
solitons occur only in the resonant state of the system and evolve on the slow 
timescale, so the forced and free solitons should have about the same k and hence, 
by (47a) and (49a), are nearly equal in height. However, we should notice the 
functional differences between the two forcing distributions (18) and (47). Moreover, 
if the amplitude P, of a forcing function, like (18), does not scale like the b, in (47) 
(which scales by (56) with a factor of k4 or a2), the T, formula should then have a 
new factor, 

T = - H e ) ,  1 
a! 

with H(P,/a2) providing the correction to the off-scale of the obstacle height. The 
present results seem to suggest that T, may only be mildly sensitive to variations of 
the strength and shape of the forcing function if the wave resistance is held equal 
as a reference parameter, as conjectured at the end of $3. 

In  addition, we have listed in table 2 numerical results for (ACD)/P, where AC, 
is the difference between the maxima and minima of CDw. The nearly constant value 
of this quantity over the broad range of k is in accord with the similarity relation 

In conclusion, we shall summarize the numerical results for the cases characterized 
by the initial perturbations (59) and (60). In the first case with infinitesimal initial 
perturbations (such small perturbations would be inevitable in a numerical calcula- 
tion), the forced steady solitons are found to remain stable over time periods of 
computation many times the period of T, given by (62). This is consistent with the 
uniqueness theorem of the Appendix, according to which an initially established 
forced steady solution, if stable, will remain permanent in form. In  contrast, in the 
second case when the steady solution is impulsively imposed on the initial state of 
rest, new solitons are found to be generated with the period of q. In view of these 
drastically different results, it seems that the study of the underlying mechanism 
could be further illuminated by introducing a new parameter p such that the initial 
condition now assumes the form 

(35)- 

T(",  0) = -PCs("L OF 0) = (1 -P) b("). (66) 

This condition becomes (59), the first case with zero initial perturbation, when p = 0, 
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and becomes (60), the second case with the initial state of rest, when p = 1. The 
critical point separating the regions of occurrence and non-existence of precursor 
solitons would therefore lie in the range 0 < p < 1. The new problem will thus be that 
of finding if there exists a certain positive constant p,, 0 < p ,  < 1, such that the 
forced steady solution undergoes a time periodic bifurcation for p > p ,  and otherwise 
for 0 < p < p,. Study in this direction is continuing to determine the basic mechanism 
underlying the phenomenon. 
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and NSF Grant MSM-8118429, A03, and was presented at the Symposium on FZuid 
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for revision was not ready in time for publication in that volume. I am grateful to 
the referees for a number of enlightening comments and for pointing out a few 
publications of geophysical context. I am also indebted to GeorgeYates and 
Jinlin Zhu for helpful discussions and for their valuable assistance in obtaining the 
numerical results presented here. The numerical calculations were done on the 
CRAY-1 at the Naval Research Laboratory (sponsored by the Office of Naval 
Research) and on the CRAY X-MP/48 at San Diego Supercomputer Center (operated 
by the National Science Foundation). 

Appendix. A uniqueness theorem for the forced KdV model 
We consider CN solutions of (15), defined for sufficiently large positive integer N 

and for all x in (- co , co), with g and all its x-derivatives tending to zero as x+& co, 
and with the forcing functions satisfying similar conditions (namely, being of the 
CN-* class). It can then be shown that such solutions are uniquely determined by 
their forcing functions and their initial values. 

Let 7 be another solution of (15) : 

7t + v- 1 -w 7z-hzzz = t(Pa+b)z, (A 1) 

and let both [ and 7 satisfy the same initial condition. The difference between (15) 
and (A 1) yields for w = g-7 the linear equation 

wt + (F- 1) wz -!(Sw, + 72 w) -iwzzz = 0, (A 2) 

w(z,O) = 0. (A 3) 

and the homogeneous initial condition 

Multiplying (A 2) by w and integrating the result with respect to x over ( -  00, a), 
we obtain, after some partial integrations, the relation 

where we have used the fact that C, 7 and their derivatives tend to zero as x+& 00. 

From this it readily follows that 

d 
-W) dt Q KE(t), 
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where E(t) is the 2-integral of 4p* over ( -  00, 00)  and K stands for the maximum of 
3)7,-21&1. We therefore have the inequality 

from which it follows that E( t )  = 0 for all t if E(0)  = 0, which is assured by (A 3), 
and hence that w(z, t )  = 0 for all z and t .  
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